Назад
Company hidden
обновлено 6 дней назад

Data Science Team Lead, Search & Evaluation (AI)

Формат работы
onsite
Тип работы
fulltime
Грейд
lead
Английский
b2
Страна
UK, Europe
Вакансия из списка Hirify.GlobalВакансия из Hirify Global, списка международных tech-компаний
Для мэтча и отклика нужен Plus

Мэтч & Сопровод

Для мэтча с этой вакансией нужен Plus

Описание вакансии

Текст:
/

TL;DR

Data Science Team Lead (Search & Evaluation): Leading a team to advance lexical, vector, and hybrid retrieval systems and design evaluation frameworks to enhance discovery experiences. Focus on rigorous experimentation, measurable impact, and aligning AI discovery capabilities with user workflows.

Location: London

Company

hirify.global helps researchers, clinicians, and life sciences professionals advance discovery and improve health outcomes through trusted content, data, and analytics.

What you will do

  • Lead and mentor a team of data scientists focused on search, retrieval, and evaluation across hirify.global’s platforms.
  • Define and execute the roadmap for enterprise-wide search and retrieval excellence.
  • Partner with product, engineering, and data platform leaders to align AI discovery capabilities.
  • Design and optimise lexical search pipelines for large-scale data retrieval.
  • Develop and refine vector-based and hybrid architectures using dense embeddings and neural re-ranking.
  • Build and maintain gold-standard evaluation datasets across scientific and biomedical domains.

Requirements

  • PhD or MSc in Computer Science, Data Science, Information Retrieval, or a related field.
  • 6+ years of experience building and evaluating search, ranking, or retrieval systems, including 2+ years in a leadership or senior technical role.
  • Deep expertise in lexical search, vector retrieval, and RAG system design.
  • Strong programming proficiency in Python, with hands-on experience in PyTorch, Hugging Face, LangGraph or Haystack.
  • Proven record of building scalable evaluation frameworks and delivering measurable improvements in retrieval or generation quality.

Nice to have

  • Experience deploying retrieval-enhanced LLMs and hybrid retrieval pipelines in production environments.
  • Familiarity with scientific ontologies and metadata standards (e.g., MeSH, UMLS, ORCID, CrossRef).
  • Strong communication and stakeholder management skills.
  • Prior experience in academic publishing, research intelligence, or enterprise-scale AI systems.

Culture & Benefits

  • Promote a healthy work/life balance across the organisation.
  • Offer numerous wellbeing initiatives, shared parental leave, and study assistance.
  • Provide flexible working hours.
  • Offer a comprehensive Pension Plan and generous vacation entitlement.
  • Provide opportunities for personal choice budget and internal communities.

Будьте осторожны: если работодатель просит войти в их систему, используя iCloud/Google, прислать код/пароль, запустить код/ПО, не делайте этого - это мошенники. Обязательно жмите "Пожаловаться" или пишите в поддержку. Подробнее в гайде →

Текст вакансии взят без изменений

Источник - загрузка...