Назад
Company hidden
4 часа назад

Machine Learning Engineer (AI)

128 000 - 198 000$
Формат работы
onsite
Тип работы
fulltime
Грейд
middle/senior
Английский
b2
Страна
US
Вакансия из списка Hirify.GlobalВакансия из Hirify Global, списка международных tech-компаний
Для мэтча и отклика нужен Plus

Мэтч & Сопровод

Для мэтча с этой вакансией нужен Plus

Описание вакансии

Текст:
/

TL;DR

Machine Learning Engineer (AI): Focusing on building and operating end-to-end, scalable machine learning workflows that solve a diversity of scientific use cases in materials, chemistry, and physical sciences with an accent on state-of-the-art algorithms. Focus on translating research insights into performant, scalable systems and contributing to technical design reviews.

Location: Cambridge, MA, USA

Salary: $128,000 – $198,000 USD per year

Company

hirify.global is the world’s first scientific superintelligence platform and autonomous lab for life, chemistry, and materials science.

What you will do

  • Design, implement, and maintain end‑to‑end ML pipelines (data ingestion, feature engineering, training, evaluation, deployment, monitoring).
  • Productionize models and services with robust testing, observability, and documentation in collaboration with cross-functional software teams and build CI/CD workflows and automated evaluations to ensure safe, frequent releases.
  • Collaborate with domain scientists and platform engineers to translate research insights into performant, scalable systems.
  • Contribute to technical design reviews, coding standards, and mentoring of best practices.

Requirements

  • BS/MS/PhD in Computer Science, Engineering, or a related quantitative field, or equivalent industry experience.
  • Strong Python software engineering fundamentals (testing, packaging, typing); experience with machine learning frameworks (e.g., PyTorch, Huggingface, etc.).
  • Experience deploying ML services to production in cloud-based infrastructure (FastAPI/GRPC, containers, orchestration, cloud infra).
  • Hands‑on experience with model deployment in production systems (LLMs, multimodal models, databases, RAG) with strong debugging and profiling skills.
  • Clear communication and collaboration in cross‑functional settings.

Nice to have

  • Exposure to scientific or engineering domains (materials, chemistry, physics) and related data formats/benchmarks.
  • GPU optimization experience (CUDA, Triton, compilation, distributed training).
  • Prior contributions to open‑source ML or scientific software.
  • Experience with workflow orchestration, data provenance, or large‑scale compute environments.

Culture & Benefits

  • Committed to equal employment opportunity.

Будьте осторожны: если работодатель просит войти в их систему, используя iCloud/Google, прислать код/пароль, запустить код/ПО, не делайте этого - это мошенники. Обязательно жмите "Пожаловаться" или пишите в поддержку. Подробнее в гайде →

Текст вакансии взят без изменений

Источник - загрузка...