Назад
Company hidden
5 дней назад

ML Engineer (AI)

Формат работы
remote (Global)
Тип работы
fulltime
Грейд
middle
Английский
b2
Вакансия из списка Hirify.GlobalВакансия из Hirify RU Global, списка компаний с восточно-европейскими корнями
Для мэтча и отклика нужен Plus

Мэтч & Сопровод

Для мэтча с этой вакансией нужен Plus

Описание вакансии

Текст:
/

TL;DR

ML Engineer (AI): Designing, training, and evaluating machine learning models and building scalable data and ML pipelines with an accent on model performance, interpretability, and cost. Focus on fine-tuning and orchestration of LLMs, implementing MLOps practices, and ensuring reproducibility.

Location: Remote, hybrid, or onsite (globally distributed)

Company

hirify.global is a global software development and IT services company with over 18 years of experience, specializing in digital transformation for enterprises and mid-sized businesses.

What you will do

  • Design, train, and evaluate various machine learning models (supervised, unsupervised, NLP).
  • Build and maintain scalable data and ML pipelines.
  • Collaborate on preparing accurate training datasets.
  • Deploy models for production using batch or real-time inference.
  • Monitor and optimize model performance, interpretability, and cost.
  • Document ML workflows to ensure reproducibility.

Requirements

  • Experience as a Machine Learning Engineer or similar role for 3+ years.
  • Proficiency in Python, including libraries like scikit-learn, pandas, NumPy, and matplotlib.
  • Strong understanding of core ML concepts: regression, classification, clustering, model validation.
  • Practical experience with deep learning frameworks (TensorFlow, PyTorch, or Keras).
  • Proven experience building, training, and deploying ML models using AWS SageMaker.
  • Familiarity with AWS Bedrock for foundation and generative models (e.g., LLMs).
  • Hands-on experience with data preprocessing, feature engineering, model evaluation, and SQL.
  • Understanding of ML model deployment (e.g., REST APIs with FastAPI or Flask, Docker).
  • Exposure to MLOps practices (pipeline automation, model versioning, monitoring).
  • English: B2+ required.

Nice to have

  • Experience with other cloud platforms (GCP, Azure) and managed ML services.
  • Experience with MLFlow, DVC, or Airflow.
  • Familiarity with CI/CD for ML systems and big data tools (Spark, Hadoop).
  • Knowledge of data security and ethical AI considerations.
  • Experience with natural language processing (NLP), computer vision, or agentic AI.

Culture & Benefits

  • Opportunity to work with leaders in FinTech, Healthcare, Retail, and Telecom.
  • Flexible work options: fully remote, hybrid, or onsite.
  • Guaranteed professional, financial, and career growth with mentoring and adaptation systems.
  • Access to a comprehensive corporate training portal.
  • Compensation for certifications (e.g., AWS, PMP).
  • Private health insurance and compensation for sports activities.
  • English courses and a referral program.

Будьте осторожны: если вас просят войти в iCloud/Google, прислать код/пароль, запустить код/ПО, не делайте этого - это мошенники. Обязательно жмите "Пожаловаться" или пишите в поддержку. Подробнее в гайде →