Назад
Company hidden
2 дня назад

LTV/NVP Modeling Analyst (Fintech)

Формат работы
remote (только Armenia)
Тип работы
fulltime
Грейд
middle
Английский
b2
Страна
Philippines, Armenia
Вакансия из списка Hirify.GlobalВакансия из Hirify RU Global, списка компаний с восточно-европейскими корнями
Для мэтча и отклика нужен Plus

Мэтч & Сопровод

Для мэтча с этой вакансией нужен Plus

Описание вакансии

Текст:
/

TL;DR

LTV/NVP Modeling Analyst (Fintech): Building and maintaining behavioral portfolio models for forecasting, unit economics (NPV/LTV), and strategy decisions with an accent on cohort/term-based hazard & transition curves. Focus on validating models and assumptions (back-testing, stability/drift, segmentation, bootstrap bounds) and implementing strong data-quality controls.

Location: Remote: Armenia

Company

hirify.global is a rapidly expanding fintech company serving thousands of customers in the Philippines through our lending business.

What you will do

  • Build and maintain behavioral portfolio models (delinquency/default dynamics) for forecasting, unit economics (NPV/LTV), and strategy decisions.
  • Develop cohort/term-based hazard & transition curves and ensure correct alignment of hazard vs cumulative definitions and consistent monitoring.
  • Validate models and assumptions (back-testing, stability/drift, segmentation, bootstrap bounds) and implement strong data-quality controls.
  • Produce clear documentation and stakeholder-ready outputs (methodology notes, model cards, dashboards/presentations).

Requirements

  • Bachelor’s or Master’s degree in Mathematics, Statistics, Economics, Computer Science, or a related field.
  • Proven 3+ years of experience in credit risk/portfolio analytics/lending analytics (fintech, bank, MFI).
  • Strong knowledge of financial risk management principles, methodologies, and portfolio performance modeling.
  • Experience with unit economics: NPV / LTV, cashflow modeling, prepayment & early repayment, restructuring behavior, discounting assumptions.
  • Hands-on Python (pandas/numpy/statsmodels/sklearn); ability to write production-quality research code and notebooks.
  • SQL (confident joins, window functions, large datasets); ability to work with messy raw data and define clean features/metrics.
  • Solid statistics: logistic regression/calibration, confidence intervals/bootstrapping, model validation, bias/leakage control.

Culture & Benefits

  • We review applications on a rolling basis and aim to get back within 2–3 business days.

Будьте осторожны: если вас просят войти в iCloud/Google, прислать код/пароль, запустить код/ПО, не делайте этого - это мошенники. Обязательно жмите "Пожаловаться" или пишите в поддержку. Подробнее в гайде →