Назад
Company hidden
14 часов Π½Π°Π·Π°Π΄

Data Scientist

Π€ΠΎΡ€ΠΌΠ°Ρ‚ Ρ€Π°Π±ΠΎΡ‚Ρ‹
onsite
Π’ΠΈΠΏ Ρ€Π°Π±ΠΎΡ‚Ρ‹
fulltime
Π“Ρ€Π΅ΠΉΠ΄
middle
Английский
b2
Π‘Ρ‚Ρ€Π°Π½Π°
India
Вакансия ΠΈΠ· списка Hirify.GlobalВакансия ΠΈΠ· Hirify RU Global, списка ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ с восточно-СвропСйскими корнями
Для мэтча ΠΈ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π½ΡƒΠΆΠ΅Π½ Plus

ΠœΡΡ‚Ρ‡ & Π‘ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄

Для мэтча с этой вакансиСй Π½ΡƒΠΆΠ΅Π½ Plus

ОписаниС вакансии

ВСкст:
/

TL;DR

Data Scientist: Designing, developing, and deploying machine learning models to optimize business operations with an accent on demand forecasting, customer segmentation, and scalable ML pipelines. Focus on building reliable models, leveraging cloud infrastructure, and automating deployment and monitoring.

What you will do

  • Develop and implement statistical and machine learning models for demand forecasting and inventory optimization.
  • Use time-series analysis and regression models to predict demand trends accurately.
  • Design customer segmentation models based on behavior and demographics.
  • Analyze and adjust segmentation strategies according to business needs.
  • Build and maintain scalable ML pipelines for deployment, monitoring, and retraining.
  • Ensure model reliability and scalability using cloud infrastructure and containerization tools.

Requirements

  • 3-5 years of experience in data science or machine learning roles with focus on demand forecasting and model deployment.
  • Proven experience with time series forecasting, statistical modeling, and machine learning algorithms.
  • Strong hands-on experience with Python or R and relevant ML libraries.
  • Familiarity with MLOps tools like MLflow or Kubeflow.
  • Experience with cloud platforms (AWS, GCP, Azure) and containerization (Docker, Kubernetes).
  • Experience in supply chain is a plus.

Π‘ΡƒΠ΄ΡŒΡ‚Π΅ остороТны: Ссли вас просят Π²ΠΎΠΉΡ‚ΠΈ Π² iCloud/Google, ΠΏΡ€ΠΈΡΠ»Π°Ρ‚ΡŒ ΠΊΠΎΠ΄/ΠΏΠ°Ρ€ΠΎΠ»ΡŒ, Π·Π°ΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΠ΄/ПО, Π½Π΅ Π΄Π΅Π»Π°ΠΉΡ‚Π΅ этого - это мошСнники. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΆΠΌΠΈΡ‚Π΅ "ΠŸΠΎΠΆΠ°Π»ΠΎΠ²Π°Ρ‚ΡŒΡΡ" ΠΈΠ»ΠΈ ΠΏΠΈΡˆΠΈΡ‚Π΅ Π² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅ Π² Π³Π°ΠΉΠ΄Π΅ β†’