Назад
Company hidden
3 дня назад

Senior MLOps Engineer (MLOps)

Формат работы
hybrid
Тип работы
fulltime
Грейд
senior
Английский
b2
Страна
Turkey
Вакансия из списка Hirify.GlobalВакансия из Hirify Global, списка международных tech-компаний
Для мэтча и отклика нужен Plus

Мэтч & Сопровод

Для мэтча с этой вакансией нужен Plus

Описание вакансии

Текст:
/

TL;DR

Senior MLOps Engineer (MLOps): Building and optimizing robust ML workflows and platform components for a leading European Online Fashion & Beauty Retailer with an accent on scalability, consistency, and speed. Focus on designing foundational ML systems, automating model deployment, and establishing best practices for ML delivery.

Location: Hybrid in Istanbul, Turkey

Company

hirify.global collaborates with a leading European Online Fashion & Beauty Retailer to build and scale Machine Learning systems.

What you will do

  • Design and build foundational ML platform components for data access, feature management, model training, deployment, and inference at scale.
  • Develop infrastructure and tooling that enable ML practitioners to experiment, version, deploy, and monitor models reliably and automatically.
  • Architect scalable, modular, and reusable ML systems that serve as the backbone of ML development across multiple teams.
  • Implement core abstractions and APIs to standardize how ML workflows are executed.
  • Build and maintain observability and reliability tooling for ML systems.
  • Establish best practices, frameworks, and reference implementations for ML delivery.
  • Work closely with infrastructure, data, and security teams to ensure ML systems are secure and compliant.

Requirements

  • 5+ years of experience in Machine Learning Engineering or MLOps roles
  • Solid Python development skills.
  • Strong hands-on experience with Airflow (MWAA), MLFlow, and/or SageMaker.
  • Familiarity with ML observability tools such as Grafana, custom metric logging, model drift detection, and alerting mechanisms.
  • Proficiency in building CI/CD pipelines for ML systems with automated testing and validation.
  • Experience with Infrastructure-as-Code tools (CloudFormation, YAML).
  • Understanding of secure and compliant deployment of ML pipelines.
  • Excellent debugging and problem-solving skills.

Nice to have

  • Experience with OpenAI API usage in production, containerization, and Kubernetes orchestration.

Culture & Benefits

  • Hybrid work model (home/office).
  • Paid Vacation.
  • Sick Days.
  • Sport/Insurance Compensation.
  • Holidays Day Off.
  • English Classes.
  • Training Compensation.
  • Transportation compensation.

Будьте осторожны: если вас просят войти в iCloud/Google, прислать код/пароль, запустить код/ПО, не делайте этого - это мошенники. Обязательно жмите "Пожаловаться" или пишите в поддержку. Подробнее в гайде →